High-Throughput Analysis of NF-κB Dynamics in Single Cells Reveals Basal Nuclear Localization of NF-κB and Spontaneous Activation of Oscillations
نویسندگان
چکیده
NF-κB is a transcription factor that upon activation undergoes cycles of cytoplasmic-to-nuclear and nuclear-to-cytoplasmic transport, giving rise to so called "oscillations". In turn, oscillations tune the transcriptional output. Since a detailed understanding of oscillations requires a systems biology approach, we developed a method to acquire and analyze large volumes of data on NF-κB dynamics in single cells. We measured the time evolution of the nuclear to total ratio of GFP-p65 in knock-in mouse embryonic fibroblasts using time-lapse imaging. We automatically produced a precise segmentation of nucleus and cytoplasm based on an accurate estimation of the signal and image background. Finally, we defined a set of quantifiers that describe the oscillatory dynamics, which are internally normalized and can be used to compare data recorded by different labs. Using our method, we analyzed NF-κB dynamics in over 2000 cells exposed to different concentrations of TNF- α α. We reproduced known features of the NF-κB system, such as the heterogeneity of the response in the cell population upon stimulation and we confirmed that a fraction of the responding cells does not oscillate. We also unveiled important features: the second and third oscillatory peaks were often comparable to the first one, a basal amount of nuclear NF-κB could be detected in unstimulated cells, and at any time a small fraction of unstimulated cells showed spontaneous random activation of the NF-κB system. Our work lays the ground for systematic, high-throughput, and unbiased analysis of the dynamics of transcription factors that can shuttle between the nucleus and other cell compartments.
منابع مشابه
Activation of Wnt signaling reduces high-glucose mediated damages on skin fibroblast cells
Objective(s): High-glucose (HG) stress, a mimic of diabetes mellitus (DM) in culture cells, alters expression of a large number of genes including Wnt and NF-κB signaling-related genes; however, the role of Wnt signaling during HG-mediated fibroblast damage and the relationship between Wnt and NF-κB signaling have not been understood. In this study, we aimed to investigate the ffects of Wnt sig...
متن کاملVGB3 Induces Apoptosis by Inhibiting Phosphorylation of NF-κB p65 at Serine 536 in the Human Umbilical Vein Endothelial Cells
Background and objectives: Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) inhibition results in an increase in apoptosis. It has been demonstrated that NF-κB subunit p65 phosphorylation at the IκB kinase phosphorylation site serine 536 (Ser536) is essential for the NF-κB nuclear translocation and activation. Therefore, NF-κB can be downregulated by suppressing its phosph...
متن کاملNaringin attenuates diabetic retinopathy by inhibiting inflammation, oxidative stress and NF-κB activation in vivo and in vitro
Objective(s): Naringin, an essential flavonoid, inhibits inflammatory response and oxidative stress in diabetes. However, whether naringin has beneficial effects on diabetic retinopathy (DR) remains unknown. Materials and Methods: Streptozotocin (STZ, 65 mg/kg) was intraperitoneally injected into male rats (8 weeks old weighting 200-250 g) to establish diabetic model, then naringin (20, 40 or 8...
متن کاملHyperglycemia- Induced NF-κB Activation Increases microRNA-146a Expression in Human Umbilical Vein Endothelial Cells
Background & objectives: Nuclear Factor kappa B (NF-κB), a master switch transcription factor, plays a critical role in the progression and development of hyperglycemia-induced microangiopathy. Hyperglycemia activates NF-κB, and subsequently increases pro-inflammatory cytokines such as TNF-α, IL-6 and IL-1β leading to development of inflammation. Some new studies have revealed the involvement o...
متن کاملMonascin ameliorate inflammation in the lipopolysaccharide-induced BV-2 microglial cells via suppressing the NF-κB/p65 pathway
Objective(s): The pathophysiology of neurodegenerative diseases is complicated, in which inflammatory reactions play a vital role. Microglia cells activation, an essential process of neuroinflammation, can produce neurotoxic molecules and neurotrophic factors, which aggravate inflammation and neuronal injury. Monascin, a major component of red yeast rice, is an azaphil...
متن کامل